
2017 Achievements

● Many backends matured implementing the CWT-API
○ LLNL: CDAT

■ subset/aggregate/regrid/min/max (including curvilinear)
○ NASA/NCCS: EDAS

■ 13 available: emul, ediff, min, emin, max, emax, sum, esum, avg, eavg,
rms, erms, ediv

○ CMCC: Ophidia
■ subsetting along any dimension (space and time), maximum & minimum

along a specific dimension
● All compatible via End User API

● COG Integrated Front End
● Ready to be considered as part of installation
● Started work on a common test suite

(​https://github.com/Ouranosinc/CWT-API-TestSuite​)
● Abstract workflow descriptions

○ CWT-API workflow description
○ JSON schema defined to describe workflows based on wps requests

(​https://ouranosinc.github.io/pavics-sdi/en/workflows/vocabulary.html​)

2018 and Beyond Roadmap

● 1 -Once Abstract Operator Grammar defined
○ Run operator thru standard dataset
○ Then get ESGF certified
○ Can define new “operator”
○ Use namespace to identify the operation’s provider (e.g. nasa.averager)

● 1- Documenting Services
○ For users
○ For discoverability

● 1- Complete common test suite
○ Expose test results to users
○ Make enough information (input files, outputs) available for users to be able to

compare their results with those of the CWT implementations.
● 2- Full support for OAuth

○ Log on one site, run on many
○ Openid group?

https://github.com/Ouranosinc/CWT-API-TestSuite
https://ouranosinc.github.io/pavics-sdi/en/workflows/vocabulary.html

● 2- Integrated in ESGF release cycle
○ Vetting system for official stack
○ Ways to add to your local node
○ 3.0 installer

● 2- Exception Handling
● 2- Fully distributed

○ NASA and ESGF interoperability
(call NASA and run part at LLNL)

○ Scalability
○ Discovery

● 2- Helping other teams’ work to be compatible with end-user API
○ Ouranos/Pavics

● 3- Abstract workflow descriptions
○ Define Grammar for describing Operator
○ need ability to articulate a workflow at the highest level
○ create a system to instantiate such workflows

■ utilizing best map to existing services and frameworks
■ requires an introspection API to query available services/operators

● 3- Workflows finalized
○ Combining processes into a workflow, mixing backends, processing at many

nodes
○ Take a chunk of an entire workflow and run that

● 3- Provenance Handling
○ Which Data
○ Which Process
○ Which Server

● 3- More Operators
○ EDAS modes
○ Handling of irregular grids (CMIP6?)
○ etc...

● 3- Analytics
○ To help get idea about data size and compute time.
○ Eventually helps optimize the workflows.

● 4- More Advanced Caching
○ From least used
○ Time expiration (30days)

● 4- Resources Management (New Operator)
○ User permission
○ Storage
○ Cpu use
○ Dry run, basic checks for data availability and permissions

